organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Laily Bin Din, Zuriati Zakaria, Aryanti Abdullah and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail: bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ R factor = 0.051 wR factor = 0.144 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

8*H*-Benzo[g][1,3]benzodioxolo[6,5,4-*d*e]quinolin-8-one (oxocrebanine)

In the title compound, $C_{19}H_{13}NO_5$, the five fused rings are essentially coplanar, while one of the O—Me bonds lies almost perpendicular to that plane. The molecule is stabilized by C— $H \cdots O$ intermolecular hydrogen bonds, which form zigzag polymeric chains parallel to the *b* axis.

Received 17 March 2005 Accepted 19 April 2005 Online 27 April 2005

Comment

Oxocrebanine (Fig. 1) is an oxoaporphine alkaloid found in plants such as *Stepania venosa* (Guinaudeau *et al.*, 1981), *Fissistigma glaucessens* (Wu *et al.*, 1990), *Goniothalamus amuyen* (Lu *et al.*, 1985) and *Illegera pentaphylla* (Ross *et al.*, 1985). The preferential activity of this compound towards the DNA repair-deficient mutant yeast strain RAD52Y and RS 321, compared with the wild-type DNA repair-proficient strain RAD⁺ (Wijeratne *et al.*, 1996), implies that it may have anticancer activity. In the present study, oxocrebanine (I) was isolated from a plant of the genus Polyalthia.

The set of fused five- and six-membered rings in the parent moiety C₁₇O₃N is essentially planar. The dioxoloisoquinoline fragment N1/C6A/C1B/C1A/C1/O1/C12/O2/C2/C3/C3A/C4/ C5 shows a maximum deviation from planarity at C12 [0.072 (2) Å], the corresponding deviation for the C1A/C1B/ C6A/C7/C7A/C8/C9/C10/C11/C11A ring system being 0.079 (2) Å at C6A. The dihedral angle between these two segments of the molecule is 5.39 (5)°. The O5/C14 methoxy group lies in the plane of the molecular ring systems [C8- $C9-O5-C14 = 4.1 (3)^{\circ}$, while the O4-C13 bond is almost perpendicular to that plane $[C13-O4-C8-C7A = 97.7 (2)^{\circ}]$. There is a weak intramolecular interaction, $C11 - H1A \cdots O1$, which may influence the planarity of the molecule. The solidstate structure is further stabilized by C12-H12A·····O4ⁱⁱⁱ (Table 2) intermolecular hydrogen bonds to form dimers. These are further connected by $C4-H4A\cdots O3^{ii}$ interactions to form zigzag polymeric chains parallel to the *b* axis (Fig. 2).

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

Molecular structure of the title compound, (I), with 50% probability displacement ellipsoids.

Experimental

The Polyalthia bullata (Annonaceae) species was collected from the Jambu Bongkok Reserved Forest, Terengganu, on the east coast of Peninsular Malaysia, and the voucher specimen (AZ 2004/2) was deposited at the herbarium of the Faculty of Science and Technology, Universiti Kebangsaan Malaysia. The air-dried, powdered roots of Polyalthia bullata (dry weight 1.0 kg) were successively Soxhlet extracted with petroleum ether, ethyl acetate and methanol. The ethyl acetate extract was subjected to acid-base extraction, and the alkaloidal fractions subjected to column chromatography over silica gel with a mixture of hexane and ethyl acetate as eluant. Early fractions were combined and further purified by chromatotron eluting with a mixture of chloroform and methanol. Orange-red crystals of (I) (0.15 g) were obtained upon evaporation of the purified solution. The melting point, 547.5-549.8 K (literature 546-548 K; Lu et al., 1985), and the NMR data are in agreement with the values reported by Wijeratne et al. (1996).

Crystal data

$C_{19}H_{13}NO_5$	$D_x = 1.517 \text{ Mg m}^{-3}$
$M_r = 335.30$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 808
a = 8.370 (2) Å	reflections
b = 11.847 (3) Å	$\theta = 2.2 - 1.5^{\circ}$
c = 14.825 (4) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 93.096 \ (5)^{\circ}$	T = 298 (2) K
V = 1467.8 (7) Å ³	Block, orange-red
Z = 4	$0.39 \times 0.31 \times 0.28 \text{ mm}$
Data collection	
Bruker SMART APEX CCD area-	2894 independent reflections
detector diffractometer	2142 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.023$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 10$
$T_{\min} = 0.958, T_{\max} = 0.970$	$k = -14 \rightarrow 14$

 $l = -18 \rightarrow 18$

Figure 2

Packing diagram of the compound, viewed down the *b* axis. Dashed lines denote $C-H\cdots O$ hydrogen bonds.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0801P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.051$	+ 0.1614P]
$wR(F^2) = 0.144$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
2894 reflections	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
226 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected interatomic distances (Å).

01-C1	1.364 (2)	C1-C1A	1.370 (2)
O1-C12	1.434 (2)	C2-C3	1.341 (3)
O2-C2	1.365 (2)	C4-C5	1.362 (3)
O2-C12	1.420 (2)	C8-C9	1.397 (3)
O3-C7	1.209 (2)	C9-O5	1.364 (2)
O4-C8	1.365 (2)	C9-C10	1.373 (3)
O4-C13	1.427 (2)	C10-C11	1.380 (2)
N1 - C6A	1.327 (2)	C14-O5	1.424 (3)
N1-C5	1.347 (3)		

l able 2			
Hydrogen-bond	geometry (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C11-H11A\cdots O1^{i}$	0.93	2.18	2.874 (2)	131
$C13-H13B\cdots O5^{i}$	0.96	2.58	3.066 (3)	112
C4−H4A···O3 ⁱⁱ	0.93	2.52	3.354 (3)	149
$C12-H12A\cdots O4^{iii}$	0.97	2.45	3.115 (3)	126

Symmetry codes: (i) x, y, z; (ii) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) -x + 1, -y + 2, -z.

Acta Cryst. (2005). E61, o1450-o1452

8071 measured reflections

After their location in a difference map, all the H atoms were placed at ideal positions, with C–H = 0.93–0.97 Å, and allowed to ride on the parent C atom with $U_{\rm iso}({\rm H})$ set at $1.2U_{\rm eq}$ (CH and CH₂) and $1.5U_{\rm eq}$ (CH₃) of the parent atom.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grants IRPA Nos. 09-02-03-0145 and 09-02-02-0163, respectively.

References

- Guinaudeau, H., Shamma, M., Tantisewie, B. & Pharadai, K. (1981). J. Chem. Soc. Chem. Commun. 19, 1118–1119.
- Lu, S.-T., Wu, Y.-C. & Leou, S.-P. (1985). Phytochemistry, 24, 1829-1834.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Ross, S. A., Minard, R. D. & Shamma, M. (1985). J. Nat. Prod. 48, 835-836.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wijeratne, E. M. K., Hatanaka, Y., Kikuchi, T., Tezuka, Y. & Gunatilaka, A. A. I. (1996). *Phytochemistry*, **42**, 1703–1706.
- Wu, Y.-C., Kao, S.-C., Huang, J.-F., Duh, C.-Y. & Lu, S.-T. (1990). *Phytochemistry*, **29**, 1829–2388.